Want to offer native, in-app customer service to your users? Get going quickly with Zendesk’s Mobile SDKs. Free with Zendesk.

Active Filters: Tools


#278: Saving Time With Source Editor Extensions 🤖🛠


We touched briefly on this topic back in Bite #273 with Generating Initializers. Today we'll take a look at a few additional Xcode Source Editor Extensions (Bite #239) that can help us save time while working. Let's begin.

First up, Equatables. We can use XcodeEquatableGenerator from Serg Dort to quickly generate the long list of property comparisons often required when adopting the Equatable protocol in our Swift Structs or Classes:

Whew! That used to take ages! Full installation instructions are here.

Next, Localization. We've all been on a project with no localization. Adding that first round of NSLocalizedString() calls can be a pain. No longer! Now we can use Localizer from Esteban Torres.

With it, we can select a line of code like this:

let _ = "Mission Control Panel"

Then, when we run Localizer's command, this line becomes:

let _ = NSLocalizedString("Mission Control Panel", comment: "Mission Control Panel")

Neat! Learn more about Localizer here.

Last but definitely not least, is XcodeWay by Khoa Pham. This one is a bit different in that it doesn't modify or generate any code, but rather lets us quickly open a bunch of commonly used directories, by adding them to our Editor Menu:

Nice! No more hunting around in Finder or Terminal for these.

Know of another neat Source Editor Extension? Send it along!

Xcode Source Editor Extensions are really starting to come into their own. Today we'll look at one that solves an age-old annoyance for Xcode users: Importing.

We've all been there. We're deep down in the depths of file, and we realize we need to import a module. We dutifully scroll all the way up, type the import, then scroll back down trying to find our place, and get back in "the zone". Yuck.

Let's try out a new Source Editor Extension (Bite #239) from Marko Hlebar called Import.

As the name suggests, it allows us to type an import Module statement anywhere, then press a keyboard shortcut and have the import fly to the top where it belongs.

Let's try it out.

After installing the extension, we'll import CoreGraphics.

Xcode's Autocomplete still works here to help us find the module we want to import. Neat!

By default the keyboard shortcut is Command + Control + P. This trigger is also available via the menu item: Editor > Import > ☝️.

Success! Now we don't have to lose our place, or our train of thought when we need to import something.

Learn more about Import (including full installation instructions) at git.io/import

In some cases, Swift Initializers can be a pain to implement.

They can often be 100% boilerplate code, and feel like a chore to write.

This issue is at its worst when defining we're Swift Structs in a framework or module.

In Swift, Structs are automatically given a synthesised initialiser... with an internal modifier. Doh. 😣

This means the initializer is only accessible/visible inside the module we're defining it in.

This means we're stuck needing to manually add our own initializers for each of our Structs.

Creating and keeping these initializers up to date can add up to a ton of boilerplate code maintence. Yuck.

Today we'll try out an Xcode Source Editor Extension (Bite #239) from Bouke Haarsma that can help us write these automatically.

The extension works by taking the Swift properties defined within our selected text and converting them to parameters in a Swift Initializer.

After we install the extension, we can write up an example Struct in our code to try it out:

public struct Record {
  public let name: String
  public let type: UInt16
  public let unique: Bool
  public let ttl: UInt32
  var data: Data

We'll select just the properties, then select Editor > Generate Swift Initializer > Generate Swift Initializer.

Success! We just saved ourselves a ton of time, and typing. Neat!

Learn more about SwiftInitializerGenerator (including complete installation instructions) at git.io/swiftig

Xcode Project folders can be a messy place. Today we'll check out a tool from the folks at Venmo that can help us tidy up called Synx. Let's take a look.

At its core, Synx's main purpose is to reorganize the files and folders in our Xcode project folder to match the groups and structure we've setup inside Xcode's Navigator pane.

We can start by organizing a project full of content:

Then we'll install Synx:

gem install synx

Then we can simply head into our project's directory and run the main command:

synx ./OCMock.xcodeproj

Synx will work its magic and re-organize our files on disk, creating directories and moving files as needed to make things match the groups in our project.

Additionally, we can also use Synx to remove files no longer referenced in our project, like this:

synx --prune ./OCMock.xcodeproj

We're also provided a couple arguments to help us control how Synx behaves.

We can exclude files:

synx --exclusion /OCMockTests ./OCMock.xcodeproj

Last but not least, for those of us who like to manually sort our files by concept rather than name, we can disable sorting:

synx --no-sort-by-name ./OCMock.xcodeproj

Choosing how to organize projects can be a very subjective and personal choice, this is just one approach. Always use whatever works best.

Learn more about Synx at git.io/synx.


#252: Compiling Swift from Source 🐤🛠


Today we'll take our first step towards contributing to the Swift language. We'll learn how to download the codebase, compile it, and run tests. Let's get started!

First, we'll prepare our environment. We'll be doing all of this on a Mac today, but all of this is also possible on Linux (and a bunch of other platforms).

We'll begin by using homebrew to install a couple of build tools:

brew install cmake ninja

Once that's done, we'll make a new directory somewhere sensible where we can put everything:

mkdir -p ~/projects/swift

Next, we'll do the first clone:

git clone git@github.com:apple/swift.git

Once this is done, we'll pull down all the dependencies and other projects involved with building Swift:

./swift/utils/update-checkout --clone-with-ssh

We have now cloned and checked out a lot of code, it's time to get building. We'll head into the swift directory and kick off a standard build, then run basic tests like this:

cd swift
./utils/build-script -r -t

That's it! At this point we can go get a cup of coffee (no really, this is going to take a while, even on a fast machine).

With these skills in hand though, we can now edit code, and see what effects our changes have on tests.

We can run basic tests at anytime with:

./utils/build-script --test

Or run more intensive validation tests like this:

./utils/build-script --validation-test

This is just the beginning, in the future we'll look at fixing a Swift bug, and contributing our work back to the project.


#248: Installing a Swift Toolchain 🐤🛠


The Swift language is always evolving. Bugs are being fixed, new proposals are implemented, etc. It'd be great if we could try out these features out as they're being implemented, without having to wait for official releases.

Today we'll take a look at how to download, install, and try out the latest Swift Toolchain in Xcode. Let's get started!

We'll begin by heading to https://swift.org/download/ and looking for the "Snapshots" section. Here we can also find many other preview releases, etc.

Click "Xcode" to download an installer:

We'll run open the installer, and complete its steps.

We can now open Xcode and select our new Toolchain.

We can also manage Toolchains in Xcode's preferences:

With our new Toolchain selected, all builds will use it, neat!

Getting involved with Swift's development is a great way to stay informed on where things are headed. We'll look at getting even more involved in future Bites!

WWDC brought us a whirlwind of changes all over Apple's platforms. One interesting announcement was Xcode Source Editor Extensions. These allow us to add commands to Xcode that can work with the contents of the code we're working on. Yes, Apple also announced that Xcode won't load plugins (like Alcatraz, etc.) anymore. Bummer.

Today we'll try to shake off our feels about plugins going away by making our first Source Editor Extension, let's do it!

We're going to make a super-simple Extension that lets us easily "sign" our code comments. Like this:

// - @jakemarsh

We'll start by creating a new macOS app. Then we'll add a new target to it, and choose Xcode Source Editor Extension.

Xcode gives us a nice template of files to start with. We can head into SourceEditorCommand.swift to implement our command.

class SourceEditorCommand: NSObject, XCSourceEditorCommand {
  func perform(with invocation: XCSourceEditorCommandInvocation, completionHandler: (NSError?) -> Void ) -> Void {
    guard let selection = invocation.buffer.selections.firstObject as? XCSourceTextRange else { completionHandler(createError()); return }

    let commentText = "// - @\(NSUserName())"

    invocation.buffer.lines.insert(commentText, at: selection.end.line)


We start by looking at the invocation's selection and guard'ing to make sure there's a valid insertion point for us to append to, then create a new comment using the handy NSUserName() function in macOS.

Finally, we use the provided XCSourceEditorCommandInvocation one more time to insert the new comment text into the buffer. We call the completionHandler with a nil to let Xcode know we've completed our work without any errors, and we're done!

We can customize the name of our command in our Info.plist, like this:

Now, how are we going to test this thing out? Well, Xcode has some nice support built in for debugging these, but first we'll have to endure a little pain to get things working (at least during this first beta, later Xcode 8 releases will hopefully not need these steps).

We'll only need this while running OS X 10.11, macOS 10.12 users can skip this step:

We'll need to run sudo /usr/libexec/xpccachectl in Terminal, then reboot our Mac.

Once it's back up, we can open Xcode 8 again, and Build & Run our Extension. We'll be asked to choose which app we'd like to run it in. We'll choose Xcode 8 (be careful not to choose an older Xcode version as the icons are easy to miss).

Another instance of Xcode 8 will launch in our dock and… Boom! Xcode's dark heart is revealed!

Just kidding, Xcode is displaying itself this way to help us differentiate between the one that's we're debugging and the "real" one.

We can head to the Editor menu to test out our new command. That's not all though, we go back to the other Xcode instance and set breakpoints, inspect variables, etc. Neat!

Plugins may be gone, but Source Editor Extensions still offer a ton of interesting possibilities. Looking for inspiration? Here's a few on Github already.

Plugins are a great way for us to extend Xcode, adding functionality that Apple didn't ship with it. We've covered Xcode plugins a bit here in the past, notably in Bite #147, where we learned about using Alcatraz to install plugins. Today we'll look at a new plugin called BuildTimeAnalyzer from Robert Gummesson. It can help uncover why are code is compiling slowly. Let's dive in.

We'll start by completing the steps in Bite #147 to install Alcatraz. (If we're going to be installing and trying out plugins Alcatraz is a good way to organize and manage everything).

Once installed, we'll open the Alcatraz Package Manager by going to Window > Package Manager.

We can search for "BuildTimeAnalyzer" in the search field to find the plugin and install it. Once installed, we'll restart Xcode and open our project.

We can open the analyzer window by selecting View > Build Time Analyzer from Xcode's menu.

Next, we'll need to add some compiler flags.

(Remember to add these to any other targets your app may depend to see compile times for those too).

We'll add -Xfrontend and -debug-time-function-bodies to the "Other Swift Flags" in our app's target's build settings.

After that, one last clean and build and we should start to see a list of how long each bit of our code is taking to compile. Neat!

We can click on each result to jump straight to the line of code that's causing the slow down. The results are often surprising!

For example: Adding Collection types together seems to bring the Swift compiler to a slow crawl.

What interesting slow downs did you find in your code? Send them to @lilbitesofcocoa on Twitter!

More info about BuildTimeAnalyzer can be found at git.io/bta

It's another fastlane Friday!

Bitcode is awesome. It lets our users download much smaller versions of our apps, containing only the bits they need to run it on their devices.

Unfortunately, it creates a few challenges for using third-party crash-reporting services.

Not to worry, fastlane has our backs. Today we'll look at a new built-in fastlane action (Bite #140) that can automate all of this.

The issue is that Crashlytics (or any service analyzing our crash logs) needs our dSYM files to convert raw crash logs to ones that containing line numbers and function names and all the other useful information we'll need to actually fix the bug causing the crash.

We'll begin by making sure we have the latest version of fastlane. (A quick gem update fastlane will do the trick).

Then, we'll add a new lane:

lane :refresh_dsyms do
  download_dsyms                  # Download dSYM files from iTunes Connect
  upload_symbols_to_crashlytics   # Upload them to Crashlytics
  clean_build_artifacts           # Delete the local dSYM files

Now we can just run fastlane refresh_dsyms at anytime and everything will be synced up to Crashlytics. Apple seems to recompile our apps at will, and whenever their systems need.

For these reasons, it's probably best to toss this command into a CI server or some other system that will run it once or twice a day.

Support is already in for Crashlytics, Sentry and HockeyApp.

Everything is open source, so we can add support for our own service if needed.

More info about all of this can be found in fastlane's docs, found here.

Those who have been an iOS, OS X, tvOS, or watchOS developer for any significant amount of time know that Xcode is an incredible tool for creating awesome apps. Until it isn't. Sometimes Xcode gets confused and needs our help. Today we'll look at one way we can clean up our environment and possibly get back to work.

There's a myriad of reasons why the following technique resolves many common Xcode issues. The important part is that it works. Sometimes. Maybe.

Anyways, there's this folder full of "invariants" and temporary files that Xcode shuffles things around in as we use it to build our app. It's called DerivedData and contains caches, compiler waste, build products, etc.

If we ever find ourselves wondering if a certain compiler error or unexpected Xcode behavior really is our fault or a bug in Xcode, we can try clearing out this folder before jumping on the Google train.

The "manual" quick/dirty way is to quit Xcode then run:

rm -rf ~/Library/Developer/Xcode/DerivedData

Then re-launch Xcode. Also keep those fingers crossed.

Alternatively, we could use an app to do all this for us. Watchdog is an app that lives in our menu bar and cleans up stale cache files in Xcode. Very cool!

Page 1 of 5